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1. I N T R O D U C T I O N  

At present, the direct theoretical description and numerical simulation of multiphase transport 
phenomena on a microscopic level are nearly excluded due to the complex geometry of the 
interphase boundaries and due to limitations in computer capacity. One way of investigating 
macroscopic aspects of multiphas¢ systems is to use a volume-averaging technique (Drew 1983; 
Hassanizadeh & Gray 1979a, b, 1980). By this procedure, point transport equations valid on the 
microscopic level are averaged over a representative element volume (REX/), to obtain an averaged 
formulation of the dynamic behavior of each phase at any point in space. The resulting averaged 
or macroscopic equations contain the phase fractions as well as products of deviations from mean 
values and terms accounting for interphase transport. These terms are expressed by appropriate 
constitutive relationships obtained from microscopic considerations; hence, the micro-macroscopic 
couplings are fully reflected in the averaged transport equations. 

Averaging theorems that relate an average of a spatial or temporal derivative to the derivative 
of the average are a key mathematical tool used to perform volume averaging. A number of studies 
have been devoted to developing these theorems and applying them to multiphas¢ transport 
problems (Whitaker 1967; Slattery 1967; Gray & Lee 1977; Cushman 1982). Gray (1983) further 
derived averaging theorems for a nonconstant averaging volume. However, all previous studies are 
formally restricted to homogeneous multiphase systems with only a single microscopic length scale. 
In this case it is sufficient to perform single-step volume averaging to transform the microscopic 
equations into the corresponding macroscopic equations. This conventional volume-averaging 
technique is referred to from now on as single-scale volume averaging, so as to distinguish it from 
dual-scale volume averaging for multiscale heterogeneous systems, which is the subject of the 
present paper. 

This brief communication considers a heterogeneous multiphase system where disparate multiple 
length scales associated with various phases exist. Such heterogeneous systems arise from a wide 
range of applications in chemical, civil, geological, mechanical, materials, hydrological and 
petroleum engineering. Typical examples include solid-gas flows with nonuniform particles, 
dual-porosity flows in a naturally fractured reservoir (Douglas & Arbogast 1990), solute transport 
in aggregated porous media (van Genuchten & Wierenga 1976), diffusion and dispersion in packed 
beds consisting of porous catalysts (Plumb & Whitaker 1990) and transport during dendritic 
solidification of metallic alloys (Beckermann & Viskanta 1992). There is great interest in developing 
meaningful transport equations for heterogeneous systems with multiple length scales, in order to 
capture the various interesting phenomena occurring on different length scales. 

Basically, two different volume-averaging approaches to the modeling of transport processes in 
heterogeneous multiphase systems have been utilized. One approach treats the fluid associated 
with a smaller microscopic length scale (micropore fluid) and the fluid in a microstructure of a 
larger length scale (macropore fluid) as ordinary distinct phases, and then directly applies the 
conventional volume-averaging procedure, referred to as single-scale volume averaging in this 
paper (e.g. Hassanizedeh 1988). Despite the fact that this approach has appealing advantages in 
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terms of simplicity and straightforwardness, fundamental questions remain with regard to its 
validity for multiscale heterogeneous systems. In the other approach, a two-step volume-averaging 
procedure, consisting of local volume averaging and large-scale averaging, is performed in order 
to include the effect of local heterogeneities (Quintard & Whitaker 1988; Plumb & Whitaker 
1988, 1990). In local-volume averaging, the point equations and interfacial boundary conditions are 
averaged to form the local-volume-averaged equations. Then, the large-scale averaging further 
homogenizes these local-volume-averaged equations over a higher scale volume, whose size is large 
compared to the length scale of the local heterogeneities. We refer to this procedure as dual-scale 
volume averaging. Apparently, the latter approach does more justice to the multiscale nature of 
a heterogeneous system and provides more physical insight. 

The current paper accomplishes two tasks in progressing toward a macroscopic description of 
heterogeneous multiphase systems. First, we develop dual-scale volume-averaging theorems for 
spatial and temporal derivatives of physical variables. These theorems will allow for a direct and 
easy use of the dual-scale volume-averaging method in various transport processes. In contrast, 
Whitaker and coworkers performed the dual-scale volume-averaging procedure each time for a 
particular equation. The other difference between this work and that of Whitaker lies in the fact 
that we relax the assumption that the small-scale averaging volume (or local averaging volume, in 
Whitaker's terminology) is independent of space and time. Therefore, interchanging the order of 
integration and differentiation in the large-scale averaging is not trivial. This relaxation becomes 
critical in applications involving a change of phase, where a phase having a small microscopic 
length scale undergoes appreciable growth or decay. Thus, the work extends the technique of 
dual-scale volume averaging. Also, we compare both volume-averaging methods, in order to 
examine the validity of single-scale volume averaging as applied to heterogeneous multiphase 
systems. 

2. SINGLE-SCALE VOLUME AVERAGING 

For comparison with the dual-scale volume-averaging theory, the single-scale averaging 
theorems are briefly reviewed. 

As an example, let us consider a two-scale, four-phase system as illustrated in figure 1. The four 
phases contained within the averaging volume V0 are characterized by either of the two length 
scales. Here it must be stressed that the phases are not required to be physically different, but may 
represent the same physical phase if that phase has different length scales. For instance, a liquid 
of a smaller length scale is considered to be a phase different from the same liquid having a larger 
length scale. 

I small rnicroscale length 

L large microscale length 

Figure 1. Illustration of a dual-scale four-phase heterogeneous system. 
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Each phase k in //"0 occupies a total volume Vk and is bounded by the interfacial areas A, and 
A k. Here the subscript and superscript are especially devised to denote the interface of phase k with 
another phase having the same length scale and with a phase having a different scale, respectively. 
The reason for dividing the total interfacial area into two parts, which are characterized by their 
length scales, is to facilitate the comparison with the dual-scale volume-averaging theory. 

The definition of a volume-averaged quantity ~' in phase k is 

° X k l t t k d V  , [1] 

where X k is the distribution function, being equal to unity in phase k and zero elsewhere. The 
intrinsic phase average is defined as 

(~-Ik>k-~-~kfvoXk~lkdV [2] 

and this leads to the definition of the volume fraction ek as 

= V0" [3] 

Clearly, ek is constrained by 

Also, it follows that 

ek = 1 and 0 < ek ~< 1. [4] 
k 

< q'k > = ek(~k >~. [5] 

The fluctuating component of ~k is defined as 

~0 k = ~F k -- (~k> k [6] 

and the average of the product of two quantities ~'k and @k is thus given by 

<qZk@k)k = <qJk>k<@k)k+ <q~k~k> k. [7] 

Finally, we need two important averaging theorems which relate the average of a derivative to the 
derivative of the average (Whitaker 1967; Slattery 1967): 

Ot = Ot i3 0 ~kw'ndA -'Voo ~kw'ndA [8] 
k k 

and 

Vo I IA + I I A  Vo ~Ukn dA [9] <V~k> = V<~k> + 77, ~'k ndA 
k k 

or, alternatively, lfA ' . n d A  + I ~ A  ~'.ndA, [1O] <V k> = EkV<q'k>k + ,  o Vo 
k 

where n is the outwardly directed normal vector at an interface moving at a velocity w. 

3. DUAL-SCALE VOLUME AVERAGING 

In order to develop a macroscopic model that fully accounts for the multiscale nature of the 
system under consideration, a more rigorous and fundamental procedure is needed. As shown in 
figure 2, spatial smoothing over the large-scale (macroscopic) volume, V0, requires knowledge 
of the transport equations averaged first over the small-scale volume, 6V, while the latter is 
obtained from another averaging process. In other words, we must spatially smooth the 
corresponding point equations successively over the volumes 6 V and V 0. In the following, this 
dual-scale volume-averaging procedure will be developed for each phase k with the small length 
scale. 

IJMF 19/2--K 
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\ 
8A k _- A k V~ \ 

8A k 

5A 

Figure 2. Illustration of the large- and small-scale averaging volumes. 

3. I. Averaging volumes and areas 

The large-scale volume V0 contains a network of small scale volumes, 6 V, which are bounded 
by the area, 6A, as shown in figure 2. The volume 6 V contains smaller scale phases, each occupying 
a volume 6 Vk. The size of a small scale volume, 6 V, is assumed to be much smaller than the size 
of the large-scale volume, V0, but still larger than the length scale of the phases within 6 V. Hence, 
the representative radius of the small-scale averaging volume, 6 V, can be of the same order of 
magnitude as the larger length scale of the phases in the system. Because the small-scale volume 
and area represent quantities which are infinitesimally small with respect to the macroscopic scale 
but finite when compared to the smallest length scale, it is indeed appropriate to denote them as 

V and 6A, respectively. Thus, we denote all geometrical quantities inside 6 V with the f-prefix. 
The interfacial area of phase k with the other phases within 6 V is denoted by 6Ak, since this 
interface is between phases with the same length scale. In contrast, the area 6A k is the portion of 
the outer boundary of the small-scale averaging volume, 6A, where phase k exists. Hence, 

[ll] 
k 

In addition, we define a summation operator by which a geometrical or physical quantity in a 
small-scale volume, 6 V, can be integrated over the large-scale volume, V0, i.e. 

• 6V = ~ • d r ,  [12] 
vo .Iv;. 
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where • is a constant quantity inside each small-scale volume and the subscript A denotes the region 
occupied by all phases with the smaller length scale. Thus, [12] simplifies the integration into a 
summation of • over all discrete small-scale volumes contained in V0. For instance, 

~ 6V= V~. [131 
Vo 

Similarly, we have 

and 

6A = A>, [141 
vo 

v, ,  [15l 
v0 

~, 6At = Ak [161 
vo 

~ A k = A k ;  ~A*=A~; [17] 
v0 k 

where A~ denotes the total boundary area of all small-scale averaging volumes inside V0. 
A schematic illustration of the above nomenclature and most geometrical relations is also provided 
in figure 2. 

3.2. Averaging operators and averaged quantities 
Averaged quantities are related to microscopic quantities through a properly defined averaging 

operator. In the present work, two-level averaging operators are required: one for the small-scale 
volume which is denoted by {.}; and the other over the large-scale volume which is denoted by 
(->. Therefore, we have 

= f vxk  ,dr, [18] 

where Xk is again the phase function, being equal to the unity in phase k and zero elsewhere within 
V. The large-scale averaging operator is conventionally defined as 

<~Pk> =~00 X*~PkdV" [191 

Here, Xk means more than a phase function. When phase k has a higher length scale, X, has the 
same meaning as before. However, when phase k has a smaller length scale, X, is equal to unity 
in phase k within the k-region and zero elsewhere within the large-scale volume, V0; i.e. X, = X~, 

Combining the two definitions of the averaging operators for the two length scales, a dual-scale 
averaging operator can be written as 

<{~'*}> =-Voo X~ vX,~,dV dV. [201 

The intrinsic volume average is defined only for the dual scale: 

l f X~{~k}dV. [21] 
= V, v0 

Then, it follows that 

= [22] 

For the special case, ~'k -- 1, we obtain the definitions of two types of volume fractions for each 
phase based on either 6V or V0. First, [18] yields 

5V, [231 



402 BRIEF COMMUNICATION 

which is constrained by 

6ek = 1. [241 
k 

The quantity, 6ek, can be referred to as the internal volume fraction of phase k within the 
small-scale volume. Second, substitution of ~k = 1 into [20] leads to 

e, = X~ 5~, d V. [25] 

To gain a simple physical interpretation of the volume fractions, we further assume that &, can 
be treated as a constant with respect to the above integration. Then the following relationship 
between the two kinds of volume fractions is obtained: 

where e~ is defined as 

e, = 6ek" e>., [26] 

V;. [27] 
8'~ ~-'~" V0 

which can be interpreted as the global volume fraction of all small scale phases within V0. 
Therefore, in terms of [26], the total volume fraction of a small-scale phase in the large-scale 
averaging volume is equal to the product of the global small-scale fraction and the internal phase 
fraction. However, it should be pointed out that the above assumption regarding the constant 6e, 
is not implied in the following derivation. 

Again, the dual-scale intrinsic phase average can be related to the volume average by 

({~Vk})k = ({ ~V,}) [28] 
e, 

The small-scale fluctuating component of ~,  is conventionally defined as 

and the large-scale one as 

Combining [29] and [30], we get 

~k = ~Vk- {~k} k [29] 

= - [30] 

{~,}' + ~,  = ~Pk -- ({~P*})*" [31] 

This equation simply implies that two fluctuating components appear in dual-scale volume 
averaging. One is between the microscopic- and small-scale volume averages, and the other arises 
from the second volume averaging due to local heterogeneities. 

The dual-scale volume average of the product of two quantities ~'k and ~,  is then expressed by 

= <{~V,}>k({Ok}>* + <{~k}'{Ok}'>* + <{~6,~,})*. [321 

Note that in dual-scale volume averaging, dispersion arises from two sources: one is from 
microscopic fluctuations while the other is due to the nonhomogeneity of a small-scale volume- 
averaged quantity within the large-scale volume. 

3.3. Averaging theorems 

At this point we are ready to develop the macroscopic transport equations. A natural way to 
do this is to apply the single-scale volume-averaging procedure twice to the microscopic equations. 
However, this procedure turns out to be extremely tedious and has to be performed for each 
individual conservation equation. In addition, the second volume averaging over the large-scale 
volume has to deal with the complicated terms that arise from the first volume-averaging process 
over the small-scale volume. Instead, a more efficient way to derive the macroscopic equations is 
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to develop dual-scale averaging theorems, and then directly apply them to the microscopic 
equations once. This is the aim of the development that follows. 

The single-scale volume-averaging theorems will be used as the basis for the derivation of 
dual-scale theorems. The former have been developed elsewhere (Whitaker 1967; Slattery 1967; 
Hassanizadeh & Gray 1979a, b). For the sake of generality, it is assumed that the small-scale 
volume 6V is time-dependent and spatially varying. Hence, we utilize Gray's averaging theorems 
for a nonconstant averaging volume (Gray 1983). In our terminology the temporal theorem can 
be stated as 

Note that if 6V does not vary with time, the interracial velocity on ~A k vanishes and [33] reduces 
to the standard form of the time-averaging theorem. 

Averaging all terms in the above equation over the large-scale volume Vo yields 

We are going to treat each of the terms on the RHS of [34] separately. Application of the chain 
rule to the first one yields 

v00 ,0N v00 
Because V0 is independent of time, the order of differentiation and integration in the first term on 
the RHS can be interchanged and the last term can be further decomposed. Then 

I X~. d I {~'k} dt + X~'{7/k} de. [36] 

Making use of the following property of the distribution function, X~ (Gray & Lee 1977): 

~x~ 
a--t- = w" n6 (x - xA~ ), [37] 

where n is a unit vector normal to the surface pointing to the side where X~ = 0, w is the velocity 
of the interface, A~, and 6 is the Dirac function. The second term on the RHS can be reduced to 
an area integral such that 

V00 _h_d v l = l 
A 

The second equality in [38] transforms the integral over a discrete field into the summation as 
defined by [12]. The same transformation reduces the third term on the RHS of [36] to 

1 X~.{~k} 10(6V)  d V =  1 {~k} [39] 

Inserting [38] and [39] into [36] yields 

l 0 o F0<Lv) 

The last term on the RHS of [40] vanishes due to material conservation of the small-scale volume, 
$V. We can also arrive at the same conclusion, if we set ~'~ = 1 in [33] and then add up the resulting 
equations for each phase. Hence, 

~00 .] Vo ~-V~ [6V{Pk}] dV = ~ ({~,}) .  [41] 
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The second term on the RHS of [34] is simplified by employing a similar transformation as in [38], 
then 

V0 A, 

- Vo ~, w" n d A .  [42] 
k 

Likewise, 

l f (X~ ndA)dA= 

Substituting [41]-[43] into [34], we finally obtain the dual-scale time-averaging theorem as 

The development of the dual-scale averaging theorem for spatial derivatives also begins with the 
single-scale spatial averaging theorem, which has been derived by Gray (1983) for a non~nstant 
averaging volume: 

{V~g,}=~ V[6V{~,}]+~ f~A,~P, nd A V(~V) l 
~ V ~A f~A* ~*n dA. [45] 

This is the original form, but in the present terminology. Here, it should be pointed out that the 
derivation of [45] assumes a spherical volume ~ V. 

For convenience, we first transform [45] into an alternate form as 

Then, by performing the second averaging to the above equation, the following results: 

x~ 

[461 

1 V(6V) f ~P,n dA)  dV. +~00fvoX~ ( { ~ , } _  1 v ~ J,~, [47] 

Application of the chain rule to the first term on the RHS of [47] yields 

~00 X>. V{ ~v, } dV = V(X;. {~,}) dV - {~P,} VX>. dV. [481 

The first term of the RHS of [48] can be simplified by interchanging the order of differentiation 
and integration, since V0 does not depend on spatial coordinates. The second term needs further 
manipulation. 

The following property has widely been used in deriving averaging theorems (Gray & Lee 1977): 

VX~. = - n  6(x - xA~., t). [49] 
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This equation involves the Dirac function, which is zero everywhere except at the interface A~. Use 
of this relation and the mean value theorem simplifies the second term on the RHS of [48], such 
that 

Vo {~k}VX~dV 1 n6(x --XA~.,t){~k}dV 

where the fact has been employed that n and 6 are both constant within the smaller-scale volumes 
for the spherical averaging volumes considered here, so that they can be moved out of the integral. 
Now, moving n6 back inside the integral, one obtains 

= ~ ~kn dA, [511 
k 

where the integrand is nonzero only at the intersection of 6A and 6 VK, which turns out to be 6A k. 
Finally, [48] is reduced to 

f oX. V{, .}  dV = }> + "kndA. [52] 

Now, we simplify the second term on the RHS of [47] by utilizing the summation transformation 
as defined by [12]. Hence, 

=l~ I ~PkndA)tV= 1 1 ~A~PkndA. [53] 

Rewriting the last term on the RHS of [47] using the special notation for a volume-averaged 
quantity, we obtain 

v( v) . , l l \, 
(-'-g-V-({rk)--'~Ak~P'ndA)) = \ 6V I'({"}-~'A ~A, ~P'ndA [54] / 

where the identity given by [7] has been employed and any fluctuating components have been 
neglected as a first approximation. It is clear that the fluctuating components arise from the gross 
nonuniformity of the small-scale volumes within the large-scale averaging volume. They vanish if 

V is spatially uniform with V0. Substitution of [52]-[54] into [47] leads to the following dual-scale 
volume-averaging theorem for spatial derivatives: 

({V~'~}) = V({Pk}) + ~oo Pkn dA Vo ~Pkn dA 
t 

v(6v) l dA I" [55] + ( - X F / ' ( { ' . }  - ~ fr~ ~'.n 
It is worth noting that the second and third terms on the RHS of [55] arise from the first 
volume-averaging process within 6V and account for the boundary conditions at the A k and Ak 
interfaces, while the last term on the RHS results from the second volume-averaging step (i.e. from 
6V to V0) and is due to local heterogeneities. Therefore, a dual-scale volume-averaged equation 
includes the effects of local heterogeneities. In contrast, single-scale volume averaging can only 
reveal the effects of boundary conditions, while local heterogeneities are implicitly ignored. 
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4. CONCLUSIONS 

A heterogeneous multiphase system has been analyzed using a multifluid approach, in which not 
only various physical phases but also a phase having different length scales are considered as 
distinct fluids. 

For a heterogeneous system consisting solely of different physical planes, a direct comparison 
can be made between [8] and [44], as well as between [9] and [55]. The only difference between the 
two kinds of volume-averaging theorems is the appearance of the last term in [55], which is caused 
by the spatial variation of c~ V within the large averaging volume, V0. In the special case where 6 V 
is spatially uniform, the dual-scale volume-averaging theorems reduce to the previously derived 
single-scale volume-averaging theorems. Even when ~ V is not uniform, [44] and [55] lose their 
explicit dependence on ~ V if the last term is negligibly small compared to the other terms in [55]. 
Thus, provided that this criterion is satisfied, the traditional single-scale volume-averaging 
technique can be applied to obtain meaningful averages, even when the system is heterogeneous 
and characterized by several disparate length scales. The above conclusion applies no matter how 
t5 V varies with time. 

For a system in which one physical phase exhibits both length scales, one needs to first divide 
the phase into two different phases according to their respective length scales. This involves the 
definition of A k, which represents the imaginary interface between the two length scales. Recall that 
A k does not need to be stationary, but can evolve with the growth or decay of a particular length 
scale. 

Lastly, a subtle difference between the single- and dual-scale volume averaging should not be 
ignored. According to [32], the dispersive terms in the dual-scale averaging arise not only from 
nonuniformities on the microscopic scale but also from the spatial variability in the field quantities 
on the small scale. Thus, the modeling of the dispersive terms is more complicated than in 
single-scale volume averaging and requires additional research. 

A direct application of the present fundamental work can be found in the modeling of equiaxed 
dendritic solidification of metallic alloys (Wang & Beckermann 1992). Such a system can be 
visualized as consisting of growing crystals that have a complicated ("dendritic") internal structure 
and are uniformly dispersed in the melt. The solid crystal and the interdendritic liquid within the 
equiaxed grains share a common interfacial structure of the order of 10-5-10-4m, whereas the 
interface between the extradendritic liquid outside the grains and the interdendritic liquid has a 
higher length scale (of the order of 10 -4 and 10 -3 m). Following the dual-scale volume-averaging 
procedure, the system is modeled to Consist of three different phases: the solid phase and two liquid 
phases. The solid/interdendritic liquid interface is described by Ak and the dendrite envelope which 
separates the inter- and extradendritic liquids is identified as A k. This imaginary envelope is a 
smooth surface connecting the dendrite tips. In addition, the equiaxed grains can be assumed to 
be of a uniform size within V0, so that the spatial variation of 6 V is negligible and single-scale 
volume averaging is justified, as shown above. As a result, a multiphase model was developed that 
is simple in form but can incorporate several important phenomena occurring on various length 
scales and lead to improved predictions in a number of situations (Wang & Beckermann 1992). 
Obviously, for crystals nucleating at different times, a spatial variation of 6 V will exist within V0 
and single-scale volume averaging may not be appropriate. 
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